
huernathmal Journal q/  Thermophysics. Vol. 18, No. 6, 1997 

Common Intersection Point Independent of 
Mole Fraction: A New Regularity 

E. K. Goharshadi I 3 and A. Boushehri ~ 
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A new regularity has been found for compressed liquid mixtures, namely, a 
common intersection point for the isotherms of the reduced bulk modulus of a 
compressed liquid mixture as a function of composition. The regularity holds 
over a specilic range of densities from a particular liquid mixture. The regularity 
has been tested for a LJ (12,61 mixture, A r +  Kr, Kr + Xe. and CO, +C_,I-I~, 
based on equations of state derived from statistical mechanics and it is wdid 
close to within experimental accuracy. 
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1. I N T R O D U C T I O N  

Liquids and dense fluids are usually considered to be complicated on a 
molecular scale. However, they show a number of simple rarities. Seven of 
the better-known ones are the following. 

(1) Near-linearity of the pressure versus the temperature at constant 
density, over the entire range from the perfect gas to the com- 
pressed liquid [ 1 ]. 

(2) Near-linearity of log P versus 1/T over the entire liquid from the 
triple point to the critical point [2] .  

(3) Near-linearity of the mean density of a saturated liquid and its 
equilibrium vapor as a function of temperature. This is the so- 
called "law of rectilinear diameter" [ 3 ]. 

(4) Near-linearity of the bulk modulus (reciprocal compressibility) of 
a liquid as a function of pressure. This regularity, first noticed by 
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Tait over 100 years ago, is the basis for a number of successful 
empMcal equations of state for liquids [4-6].  

(5 Linearity of the zeno contour and its correlation with the line of 
rectilinear diameter. The zeno contour is the locus of T versus 
1/V points at which the compression factor, Z = P V / n R T ,  is 
unity [ 7, 8 ], where V, n, and R are the volume, number of moles, 
and gas constant, respectively. The zeno line resides in the super- 
critical region, whereas the line of rectilinear diameters of course 
lies in the subcritical region. 

(6 The common bulk modulus point, i.e., all liquid isotherms of the 
reduced bulk modulus as a function of the molar volume inter- 
sect at essentially a single point [9-11]. 

p2 (7 Linearity of (Z-1)V-"  versus , where p = l / V  is the molar 
density lbr both compressed liquids and dense supercritical fluids 
[12]. 

The purpose of this paper is to point out an additional regularity for 
compressed liquid mixtures. This regularity is a common intersection point 
for the isotherms of the reduced bulk modulus as a function of composi- 
tion. The regularity holds over a specific range of densities for the par- 
ticular liquid mixture, and of course, the location of the common modulus 
point depends on the special liquid mixture. 

The regularity has been tested for a LJ(12,6) mixture and for real fluid 
mixtures based on equations of state derived from statistical mechanics. 
The real fluid mixtures are A r + K r ,  K r + X e ,  and CO~+C2H~,. Among 
these mixtures, C O , + C 2 H , ,  has industrial importance for the processing 
of liquefied natural gas (LNG), because some natural gas contains an 
appreciable amount of CO~ which must be separated before (or during) 
liquefaction to avoid its freezing at LNG temperatures. In addition, this 
interesting system is also suitable for study by statistical-perturbation 
theory, because both CO_~ and C:H~, have relatively simple molecular 
shapes. Carbon dioxide has a large quadrapole moment, whereas ethane 
has only a relatively small one, making this mixture valuable for testing the 
perturbation theory. 

2. THEORETICAL FORMULATIONS 

The statistical-mechanical equation of state for liquid LJ mixtures has 
the following form [ 13 ]: 

P/pk T =  1 -I- p ~, xixjBi/ + p ~ xix/o~ijr gii( d~, d i) - 1 ] 
f i  (i 

(1) 
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where P is the pressure, p is the number density, k is Boltzmann's constant, 
x~ and xj are mole fractions, and the summations run over all components 
of the mixture. This equation contains three temperature-dependent para- 
meters: Bij (the second virial coefficient), c(,i (a scaling factor for the soft- 
ness of the intermolecular repulsive forces), and bii (an analogue of the 
van der Waals covolume and related to c% by b~/=d(o~,jT)/dt). These 
parameters are related to the pair potential U~i(r) and are defined as 
follows: 

B , j ( T ) = 2 H f /  ( 1 - e  c,,l'r) r2dr (2) 

c % ( T I = 2 H  " ' ( 1 - e  ~,,kr) r2dr 13) 

bi~( T) = 2/3d 3. = o~ii + T do~a/dT (4) 

where U(~'j is the repulsive part of U~j and rm is the position of the minimum 
in U!j. Finally, go(di, dj) in Eq. ( 1 ) is a pair distribution function at contact 
for mixtures of hard spheres and is defined in Ref. 13. 

The reduced bulk modulus (reciprocal of the isothermal compressi- 
bility) can be calculated from Eq. (1), that is, 

B_ = 1/k T(OP/Op).r = 1 + 2p ~. x,x~{ c~#[ gi~(d,, dr) - 1 ] + B~} 
d 

(5) 

or  

1 -- B_ = 2p ~ x,xi{~#[ 1 - g#(d,, dr)] - Bit} 
iJ 

_ pe L ~ x i.\-io~# dgi/( dz, di)/dp l (6) 

We have chosen binary liquid mixtures of LJ molecules at three 
temperatures, in which one component has a fixed parameter value (e~/k = 
34 K and a~ = 2.85 A), while the parameter values of the other component 
are ez/e~ = 3.5 and a2/aj = 2. The unlike parameters e~, and ~ ,  are taken 
to follow simple combining rules: a~_~=�89 and el~=(ele2) ~2 
Figures 1 to 4 show the isotherms of 1 - B  vs x~ for different densities in 
terms of the Boyle density, namely, pL2B. 



1520 Goharshadi and Boushehri 

0 

-50 

-100 

m ,-150 

"- -200 

-250 

-300 

-350 
0 

41.5 ~ 
T= . . K 80 

0.125 0.25 0.375 0.5 0.625 0.75 0.875 

X 
I 

Fig. 1. Isotherms of I - B  vs )(, at different temperatures for the 
liquid Lennard Jones-(12.6) mixtures [density is 0.9pt2B). 
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Fig. 2. Same as Fig. I: tile density is i)t2B. 
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Fig. 3. Same as Fig. I: the density is 1.2p~,_B. 
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The equation of state used for real fluid mixtures has the form 

P / p k T =  1 + p ~ x~xi(Bgi- OCij ) Fo+ p ~" x i x i o ~ i i G ( i  
6 (/ 

(7) 

where F~j and Gii have been defined in Ref. 14, and where the other 
parameters are the same as those in Eq, ( 1 ). From this equation, it follows 
that the reduced bulk modulus for real fluid mixtures has the form 

1 - B_ = 2p ~ xixi{oqi(Fii- G o) - Bi/Fo} 
O" 

_ p2 ~ .v,x,{ ( Bo _ ai,) dFr + o~i dGii/dP } 
ii 

(8) 

We have tested this equation on the systems Ar + Kr, Kr + Xe, and 
CO,  +C,H~,.  We have used the best available intermolecular potentials of 
the HFD-B or HFD-C forms as given by Aziz and co-workers [ 15-18] 
for Ar-Ar, Kr -Kr ,  Xe-Xe, Ar-Kr,  and Kr-Xe. Figures 5 to 8 show the 
isotherms of 1 - B  vs XAr for Ar-Kr.  This intersection occurs at the range 
of 1,4 up to 1.Tp~eB. The intersection range for K r + X e  is the same as 
Ar + Kr. Typical isotherms are shown for Kr + Xe in Fig. 9. 
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Fig. 5. I so the rms  of  I - B v s  "u for Ar + Kr  liquid mix tures  at four 
t empera tures .  The  densi ty  is 1.4pL 2B. 



Bulk Modulus of Compressed Liquid Mixtures 1523 

Inl 
| 

V" 

0 

-20 

-40 

-60 

-80 

-100 

-120 

-140 

/ / ~ ' /  142.68 

//i// 132.32 
129.32 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

X Ar 

Fig. 6. Same as Fig. 5; the density is 1.5p~2B. 

0,8 

Or 

-100 

 -200 //// 134132 

-300 [~ 

"400 1 

500-- 
0 0.2 0.4 0.6 0.8 

X Ar 

Fig. 7. Same as Fig. 5; the density is 1.6p~2B. 

840 8 6-14 



1524 Goharshadi and Boushehri 

-100 

-200 
m, = T- 

-300 

- 4 0 0  i 

- 5 0 0  
0 

Fig. 8. 

/ ~ S  "T = 147.08 K 
~-:~ir 142.68  

/ ' / ~ S  134.32 
129.32 

0.2 0.4 0.6 0.8 

X 
Ar 

Same as Fig. 5" the density is 1.7p~B. 

0 "X///~f 

-50 

-100 = K 

-200 

-250 

Pill 
, - 1 5 0  

-300 L 
0 0.2 0.4 0.6 0.8 

X 
Kr 

Fig. 9. Typical isotherms of 1 - B  vs .V~:,. for K r + X e  liquid 
mixtures at density = 1.5pt2B. 
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Fig. 10. Typical isotherms of l - B vs ,Vco_, R~r CO 2 + C': H<, liquid 
mixtures at dcn~ty =l .7pleB.  

The wtlues of oc(T) and h(T) for pure CO, and C2H<, can be 
calcuhlted from Table 1 in Ref 19. It is, however, important to use accurate 
experimental vahies of B(TI in the calculations. The major information 
missing for this system concerns the CO_,-C2 H6 interaction. Therefore, we 
must use combination rules to find the parameters of a mean effective 
(12,6) potential lbr the CO:-C:H<,  interaction and use this potential to 
calcuhite Bin(T), a~_~(T), and hie(T). We have adopted the fairly elaborate 
combination rules developed by Bzowski et al. [20] for use in a correlation 
scheme [br the properties of low-density gas mixtures [21].  The intersec- 
tion region for CO:-C2H~, iS in the range of 1.41)teB-1.gp~,_B. A typical 
result for CO2 +CnH~, is shown in Fig. 10. 

3. C O N C L U D I N G  R E M A R K S  

A new regularity, namely, a common intersection point for the 
isotherms of the reduced bulk modulus as a limction of composition, 
has been fbund. This regularity has been applied for compressed liquid 
mixtures. The reguhirity holds lbr each liquid mixture aver a specific range 
of densities. 

From a carel\il examination of Figs. 1-10, it appears that the work 
reported here contains three points of particular interest. 
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(i) The isotherms do not intersect at exactly the same composition, 
but they are within 5%of a common point. 

(ii) The lower-temperature isotherms tend to intersect at the smaller 
composition and the higher-temperature isotherms at the larger 
composition. 

(iii) The common modulus point is located at larger values of 
composition as the density increases for a particular mixture. 

The most important conclusion of the present work is that the 
presence of a common intersection point has a strong basis in statistical 
mechanics. This regularity provides a significant constraint on equations of 
state for liquid mixtures. 
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